A Graphical Simulation Management System

by A. Teolis

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR 91-75

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1991 2. REPORT TYPE 00-00-1991 to 00-00-1991
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Graphical Simulation Management System £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Systems Resear ch Center,College REPORT NUMBER
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 43
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Graphical Simulation Management System

A. Teolis *

Systems Research Center
University of Maryland
College Park, MD., 20742

Keywords: 3D Graphics, Dynamical Simulation, Interactive, Object Oriented,
Software

Abstract

In this paper we describe the design and implementation of a system
for the management of complex interactive graphical dynamical simulations.
The main objective of the system is to provide tools which enable a graphical
simulation to be built with minimum effort. These tools include routines
for building interfaces (panels consisting of buttons, sliders, type in boxes,
etc.), arranging the simulation workspace, describing complex 3D objects in
terms of predefined (or user defined) primitives, and providing objects with
properties used in conjunction with lighting models.

The need for such a management system is supported by the facts that
both the development eflort and the extent of machine-specific knowledge
needed to successfully implement an arbitrary graphical simulation is signifi-
cant. It is the aim of the Graphical Simulation Management System (GSMS)
to reduce these burdens and place the power of 3D simulation within easy
reach.

We have presented several examples of dynamical simulations in which
the power and diversity of the management system is demonstrated.

*This research was supported in part by the AFSOR University Research Initiative Program
under grant AFSOR-90-0105 and by the National Science Foundation’s Engineering Research
Centers Program: NSFD CDR 8803012.

1 Introduction

Simulation has become a staple of system design. In the case that the sys-
tem under simulation is amenable to a 3D graphical representation, the ability to
graphically represent the result of a complex dynamical system simulation is an
appealing prospect. Typically, the implementation of a graphical simulation is a
formidable technical endeavor requiring a fairly in depth knowledge of specific ma-
chine hardware/software as well as a significant amount of development time. It is
the intent of the Graphical Simulation Management System (GSMS) to relax both
of these requirements. By providing tools for

(1) building interfaces (panels consisting of buttous, sliders, type in boxes, etc.),

(i1) arranging the simulation workspace,

(iii) describing complex 3D objects in terms of predefined (or user defined) pri-
matives, and

(iv) endowing objects with properties used in conjunction with lighting models,

GSMS does in fact prove to reduce significantly both the development effort and
extent of machine specific knowledge required of the simulation builder.

Although the current implementation of the management system is in the first
stages of development, the breadth of simulation scenarios which it already sup-
ports is significantly vast. Examples are presented in section 4. All examples and
the management system itself are written in the C programming language. It is
assumed throughout that the reader is familiar with C; an excellent reference is [1].

2 Overview of the System

GSMS exists as a C library archive containing routines which may be called
from an application program. It is the function of the application program to
describe the 3D object models and to set up the simulation workspace. Exactly
how this is accomplished is the major topic of this paper.

Also left to the application is the task of providing GSMS with updates of the
dynamical system being simulated. Although GSMS does no internal differential
equation solving, it does support interaction between the simulation supplied by
the application program and the application user. For example one could set up an
application such that its user may easily set or reset certain simulation parameters
(via graphical control panels). After setting the parameters, the user may then
continue to watch the affect of those changes on the evolution of the system.

Along with providing a general description of GSMS, it is the intent of this paper
to explain how a simulation builder would create a GSMS application program.

2

4

Several example application programs are detailed in the Appendix. A typical
application follows the control {low depicted in Figure 1. There are essentially
two processes which are incorporated into the main loop of an application: (i)
numerical computation of the current graphical state, and (ii) the display of its
graphical representation.

initialization

numerical
calculation

Figure 11 Typical application control flow

Routines to perform the first of these tasks, numerical calculation, must be
provided by the application. For example, in the case that the system under
simulation is the control system

i

{ ;: 5((;5 u) zeR", vel (2.1)

where u represents the control input, ¢/ the set of admissible controls and f(-) and
g(+) describe the system, it is necessary to provide numerical solutions to Equation

2.1.

Depending on its complexity, the required numerical computation may or may
not be done at actual execution time. In the case that the computation is ex-
tensive a better strategy might be to compute solutions ‘off-line’ and simply use
the graphical simulation system as a display tool. Alternatively one may wish to
employ a distributed processing scheme. This sort of implementation is discussed
extensively in [2].

3 Anatomy of GSMS

GSMS can be described in terms of several main components:
1. panel manager,

2. display manager,

3. 3D model manager, and

4. lighting, materials/color manager.

Before a detailed account is given we first present a brief overview of each compo-
nent’s function.

It is the panel manager which is responsible for the interactiveness of the ap-
plication. Through it the application user communicates with the simulation, i.e.
input. A panel is simply a window containing a collection of graphical input ‘ac-
tuators’. An actuator may be a slider controling some simulation parameter or a
button which initiates an action when depressed. There are many different types
of actuators (see Section 3.1 below).

If the panel manager provides organization for input then certainly the display
manager supplies organization for output. Its main responsibility is the manage-
ment of complex multi-window simulations. The application program specifies
precisely the simulation workspace via the display manager.

The 3D model manager is the power plant of GSMS. It is the manager which
eases the description and manipulation of complex dynamical 3D objects. Simply
stated a complex dynamical object is one which consists of connections of multiple
subobjects. Included in the model manager is a list of 3D primatives (spheres,
cylinders, etc.) which may serve as the most basic subobject in a complex object
description.

An essential component of realism is added via the lighting, materials/color
manager. This manager allows the application to easily set up lighting models and
endow objects with material properties. Material properties may be associated at
the time of object inception via the 3D model manager.

Each manager’s function is described in extensive detail below. The reader is
refered to the coded examples in the Appendix for the bare technical details.

3.1 Panel Manager

Developed at NASA Ames Research Center ! the ‘Panel Library’ (3] is a set
of routines for building interfaces. Included in this package are tools for creating
panels or windows which consist of various controls such as buttons, sliders, toggles,
type-in boxes, etc. Such a package is an invaluable asset for building graphical user
interfaces.

Although the ‘Panel Library’ provides extensive interface capabilities and flex-
ibility, its incorporation into an application can be tedious and time consuming.
Hence, the need for a ‘panel manager’ emerges. With the aid of the panel manager
the task of creating interfaces with the application user is greatly simplified.

In collaboration with Sterling Software; the ‘Panel Library’ is distributed freely.

v

Below the various building blocks or actuators of an interface are described in
detail. Currently, the panel manager only supports a subset of the actuators offered
by the ‘Panel Library’: (i) buttons, (ii) sliders, (iii) type-ins, as well as a new type
of actuator not present in the ‘Panel Library’, (iv) variable (type-ins).

3.1.1 Creating a Panel

new_panel(char *str);

Creation of a panel is invoked by this routine which initializes a panel with the
name indicated by the str argument. All further calls to other actuator placement
routines will place the corresponding actuator in this new panel. Without further
calls to other building block routines the panel will remain empty.

In the case that is desirable to have multiple panels, new_panel() must be
called before each new panel description. For example to create an interface with
two panels the structure of the code would look like the skeleton shown in Table 1.

new_panel("panel 1"); /* start describing first panel */
calls to building routines
new.panel("panel 2"); /* start describing second panel */

calls to building routines

Table 1: Panel creation structure

3.1.2 Actuator Placement

Actuators are arranged in columns automatically by GSMS. The action of
GSMS is to stack actuators in columns as they are created. That is the first
actuator created in a panel is placed in its lower left hand corner; while all other
actuators are placed on top of the previous one until the routine new_column()
is called.

new._column()

When building a panel, new_column() tells GSMS to start placing actuators
in a new column. This new column appears to the right of all previous columns.

@71

3.1.3 Buttons

Button actuators perform specified actions when they are selected or ‘pressed’
with the mouse. There are two types of buttons: (i) toggle buttons and (ii) action
buttons. Toggle buttons have associated with them a variable, while action buttons
(simply refered to as buttons) have associated with them a procedure or function.

make_toggle_button(char *str, float *ptr)

The str argument is a pointer to a string which will appear below the button as
a label. When a toggle button is selected its associated variable, *pir, is logically
toggled. That is if *ptris set to logical FALSE (TRUE respectively) depressing its
button actuator will toggle its value to logical TRUE (FALSE respectively).

For example, a toggle button might be used to control whether an axis is dis-
played or not in a three dimensional scene.

make_button(char *str, void (*function))

The str argument is a pointer to a string which will appear below the button
as a label. When an action button is selected its associated routine, function(), is
invoked.

For example, an action button may used to initiate a control algorithm.

3.1.4 Shders

A slider is used to control the value of a variable by associating its numerical
value with a position on a line segment. Once end points of the line segment are
specified the value of the variable is assigned according to the sliders position with
linear interpolation between the end points.

make slider(char *str, float min, float max, float *var, void (*function))

The str argument is a pointer to a string which will appear below the slider
as a label. Arguments min and maz provide the range of the slider and var is a
pointer to the variable to be affected. In many cases it may be desirable to have a
procedure or function associated with a slider which is invoked whenever the value
of its variable is changed. The argument function specifies a pointer to such a
procedure. If it is not desired to associate a function to the slider, the predefined
special argument null_function should be passed.

For example, a slider might be used to control the value of a certain parameter,
say 0, of a function, fy(-) that is being plotted. Each time the value of 0 is changed
it 1s necessary to redraw the plot. Associating a routine that causes the plot to be
redrawn with the slider controlling § accomplishes this.

3.1.5 Type-ins

In order to facilitate textual input from the application user, type-ins produce
a box which when selected allow keyboard input.

make_type_in(char *str, char *c_ptr, void (*function))

The str argument is a pointer to a string which will appear below the type-in
as a label; while c_ptris a pointer to the character string in which the application
user’s input is to be stored; and function is a pointer to a routine which is invoked
when the application user hits the return key.

As an example a type-in box would be useful to specify the name of a file which
is to be read.

3.1.6 Variables

Variables are type-in like boxes whose input is expected to be a floating point
value. Associated with a variable box is in a floating point variable. Upon selection
its value is set to that specified by the application user. Additionally a procedure
may be associated with the variable box.

make_variable(char *str, float *ptr, void (*function))

The str argument is a pointer to a string which will appear below the variable
box as a label; while ptris a pointer to the floating point variable which is affected
by the application user’s input; and function is a pointer to a routine which is
invoked when the application user hits the return key.

3.1.7 Reports

Reports provide a way for the application to communicate with its user. When
called with an associated message, a window is created and displayed with that
message as its content along with a button labeled ‘OK’. The action of the ‘OK’
button is to destroy its parent window.

report_window(char *str)

The *str argument is a pointer to a string which will appear as the message of
the newly created report window.

3.2 Display Manager

For a graphical simulation using multiple windows, keeping track of the data
flow to each window can become quite cumbersome without the aid of a high level
manager. Consider a typical case where it is desired to construct a graphical sim-
ulation which consists of several windows. Say for instance one is interested in
building a simulation with (i) a 3D graphical representation of the ‘real’ system,

(ii) one or more 2D (or perhaps 3D) plot(s) of some pertinent data, (iii) a window
in which the user can construct an input function with the mouse interactively,
and (iv) various panels constructed using the panel manager of the previous sec-
tion. Clearly one can see that the situation can become quite tedious without the
incorporation of some structure, i.e. a manager. This is the charge of the display
manager.

The display manager consists of a list of routines which oversee the creation
and display of multiple window applications. Since the objects contained in the
windows are of a dynamic nature it is necessary that the application program ask
the display manager to update its windows often enough, e.g. once every iteration
through the main control loop (Figure 1). The display manager routine which
performs this update is called do.window_stuff().

A pictorial representation of this routine’s action is displayed in Figure 2. When
called do_window _stuff() cycles once through every Graphic in the application
performing the required action for that Graphic’s type. In addition it automatically
takes care of updating the panels.

L configure port for

this graphic

v

call the Graphic's
render procedure

set new data FALSE]

Figure 2: Display manger action (a call to do_window_stuff())

3.2.1 The ‘Graphic’ Structure

In providing structure to the problem of multiple window display it is necessary
to introduce a generalized notion (or more precisely a data structure) capable of
representing window types of interest. As a matter of nomenclature this concept
of a generalized window is called a Graphic. Major elements of the Graphic data
structure are shown in a partial listing of its declaration given in Table 2.

Each of these fields of the data structure will be explained in the following.
Depending on the type of Graphicsome fields of its data structure will be applicable
and some will not.

[03]

typedef struct graphic {
int type, color, new.data;
char title[STRLEN];

Graph graph;
Rect *R;
int interpolation;

int (*render)();
} Graphic;

Table 2: Graphic data structure

title This field of the structure holds the name or title of the window. Each display
window’s title appears in the upper left hand corner during application execution.

type As has already been discussed, it is desired that the simulation application
display several different types of windows. It is the type field of the data structure
which is assigned to contain window type information. Table 3 lists the basic types
of Graphics available. The most basic delineation within Graphic types is that
between 2D and 3D. Contents of all 2D Graphic types are assumed to be data
plots.

[display type [description —I
G.3D 3 dimensional perspective projection
CONSTRUCTOR | application user buildable z-y plots
ARRAY array versus index plots
ARRAY vs_,ARRAY (y) array versus (2) array plots
LINK_LIST (x,y) pairs stored in link-list
INCREMENTAL update plot only (no erase)

Table 3: Graphic types

new_data, color, and interpolation In the case of a G_3D Graphic the new_data,
color and interpolation fields are ignored. In all other cases the content of the
Graphic is assumed to be a 2D plot. In this case the new.data field is a boolean
which determines whether the contents of the Graphic have changed. This field
is typically set by the application as a cue to the display manager that a cer-
tain 2D plot must be redrawn. Interpolation type between adjacent points in
the plot is specified via the interpolation ficld as one of either DISCRETE or

9

LINESSEGMENT. Graph color is specified by the color field and 1s an integer
index into a color table (each entry of the table consists of three short integers
signifying the level of red, green, and blue components of the color). See section
3.2.2 for more about colors.

render The renderfield of the Graphic data structure is a pointer to routine which
contains the drawing commands for its parent Graphic. In the case of a G.3D or
INCREMENTAL Graphic this routine must be provided by the application for
proper execution. In all other cases render is set internally.

R Tor the case of 2D plots, R describes the rectangle of bounds for the graph. It is
of type Rect which has four floating point numbers as its elements (zm, z M, ym,y M),
where (zm, ym) is the lower left hand corner of the rectangle and (zM,yM) is the
upper right corner.

graph Again, graph is used only in the case that the Graphic contains a 2D plot.
It is a data structure itself of type Graph and represents the 2D data of the Graphic
in one of three ways: (i) in a link list of floating point pairs, (see the Appendix for
an explanation of the link list utility), or (i1) as an array of floating point numbers
versus its index, (ii1) as an array of floating point numbers versus another array
of floating point numbers. These three representations correspond directly to the
Graphic types LINK_LIST, ARRAY, and ARRAY_vs_.ARRAY given in Table 3.
The structure definition is presented in Table 4. In the case that the Graphic
type indicates an array type (i.e. ARRAY or ARRAY_vs_ARRAY), the data is
represented in terms of the structure elements n_pts, z and y. In this case n_pts
represents the number of points in the graph, x a pointer to the graph’s abscissa
data (if used) and y, a pointer to the graph’s ordinate data.

typedef struct graph {
Link list *list;
float *x, *y;
int n._pts;

} Graph;

Table 4: Graph data structure

3.2.2 Color

Colors may be specified by three quantities indicating the level of red, green,
and blue components. The following routines provide tools for the definition and

10

use of colors. Table 5 indicates a code fragment which illustrates the use of each
routine.

color_entry(int index, int r, int g, int b)

Associates the positive integer indez with the color specified by r, ¢, and b.
This index is used by the routine set_color() and must be less than 256.

set_color(int index)

Sets the current drawing color to that of the entry at index. It is assumed that
the entry has been set with the color_entry() routine.

map_interpolated_colors(float min, float max)

It is sometimes convenient to associate the magnitude of a quantity with a
color. In the case that the quantity of interest represents temperature, associating
dark blue with low temperatures and red with high temperatures is a natural
scheme. Using this analogy a color mapping may be performed which associates
the value min with BLUE and the value maz with RED by invoking the routine
map_interpolated_colors. Values between the two endpoints are interpolated
smoothly.

interpolate_color_and_set(float val, float min, float max)

After color entries have been set by the routine map_interpolated_colors this
routine may be used to set the drawing color to the color associated with val It is
assumed that val is between min and maaz.

3.2.3 Specification of Workspace

A typical application using the display manager would set up its workspace
up with the structure of the skeleton shown in Table 6. The reader is refered to
applications in Section 4 for explicit examples.

init_graph(Graphic *G, render)

A pointer to a Graphic, the G argument is assumed to have elements initialized
to proper values before the call. The render argument is optional. It is the address
of a function which will be called when its associated graph must be drawn.

11

#define REDISH 28 /* some integer between O and 255 %/
{ float temperature;

color_entry(REDISH, 240, 35, 55);

set_color (REDISH)
/* do some drawing with REDISH color */

map_interpolated colors(0.0, 100.0);

/* some temperature calculation */
interpolate color_and.set(temperature, 0.0, 100.0);

Table 5: Colors: An Example

Graphic G1,G2, ..., Gn;

set appropriatc;z fields of G1
init_graph(Gt, my_'ren.der);

set appropriaT‘;e fields of Gn

init_graph(Gn);

Table 6: Window creation template

3.3 3D Model Manager

At the heart of GSMS, the model manager provides tools by which to describe
complex dynamical 3D objects. Here a dynamical object is one whose 3D descrip-
tion (or state) changes over time. Unlike the case of modeling static 3D objects it
is necessary to describe how a dynamical object changes. For instance a multi-link
robot arm moving through space towards a target item is a dynamical object whose
orientation and position of links determines its configuration at each time instant.

3.3.1 Describing a Dynamical Object

How to describe a dynamical object? This is the fundamental question which
the model manager addresses. A complex object may be described in terms of its
parts (or subobjects) and how they are connected. Consider the example of the

12

4

robot arm with two identical rigid links of given dimensions. Presumably the first
link of the arm is fastened to a base or ground. This link is free to pivot around
an axis perpendicular to the ground. Next the second link is attached to the first
through a pivot connection allowing rotation only within a plane. Hence the arm
has been completely described in terms of other composite static objects and their
connections. These types of connections may be described by affine transformations
(scalings, rotations, and translations) in three dimensional space. It is in this vain
in which the manager models 3D objects. A detailed account follows.

3.3.2 The Object Network

To illustrate the idea of describing three dimensional objects in terms of affine
combinations of subobjects, consider the case of developing an object model of a
human being. One simple representation of a human is shown in Figure 3.

°
/4 Nodes

Figure 3: Stick model of a human being

The stick model in Figure 3 might be thought of as an object network. As in
any network, the stick model network consists of nodes and branches. In the case
of an object network nodes represent represent subobjects and/or primatives while
branches represent connections between objects. All nodes in an object graph have
a common ancestor or root which will be refered to as ‘ground’. 1t is the ground
frame of reference in which GSMS renders all scenes. In Figure 3 one may think of
the torso as being grounded.

3.3.3 Acyclical Object Networks

A limitation to the current implementation of the object manager is that it is
only able to manipulate objects whose networks are acyclical. An acyclical object
network is one whose graph has no closed loops. Objects with cyclical graphs
require much higher level processing for the computation of thier graphical state
than is currently supported. This area is a key focus of future expansion for GSMS.

Unless otherwise noted all network graphs encountered in the sequel will be
assumed to be acyclical.

13

3.3.4 Connections

As mentioned earlier, connections between objects are described as affine trans-
formations (scalings, rotations and translations) in three dimensional space. A de-
tailed discussion of affine transformations and their implementation may be found
in [4]. Consider the simple case of describing a ball and socket type connection
between two objects, parent and child. The parent object is defined as the one
which is closest to ground. These rotations and translations are performed relative
to the parent object. A ball and socket connection implies full rotational freedom;
therefore, this type of connection may be fully described as a rotation in three
dimensional space. Realistically, though, the rotational freedom of the connection
must be constrained in some way, e.g. to avoid collisions between parent and child
objects. Constraining connections is left as the responsibility of the application.

Figure 4 is an example of a more informative representation of an object net-
work. Here branches are replaced with labeled boxes associating a name with each
branch (or subobject).

g i
left upper arm Torso —®right upper arm
Y - ¥
left lower arm — / \ right lower arm
* left right *
hand upper upper hand
YYYYY = = YYVY
(A 1 (1] Y Y flGlEalE
left right
lower lower
leg leg
. foot foot .
[t

Figure 4: Object model of a human being

3.3.5 Object Primitives

The description of a 3D object proposed above implies a hierarchy; and there-
fore, the existence of a set of primative objects with which all other objects (or at

14

least objects of interest) may be constructed. One can always find such a primative
set (take the set of all 3D objects); however, it is the set of primatives with the
fewest elements which will be made the most useful. A more precise way to state
this is the following: it is desired to find the smallest set of 3D graphical primi-
tives whose span under affine spatial transformations covers the set of all complex
objects of interest.

Among the 3D primative solids currently supported by GSMS are
1. cubes,

2. cylinders, and
3. spheres.

Since GSMS allows for affine transformation on any object in this primative set an
entire class of objects may be generated, e.g. ellipsoids from spheres.

3.3.6 The Object_3D data structure

In order to implement the notion of an object network it is necessary to deter-
mine a representation for one of its elements, i.e. an object. This representation or
data structure is given the name Object_3D. Displayed in Table 7 are the major
fields of the data structure Object_3D. Because the fields of this structure are
typically set via display manager routines for placing objects into a network, the
application need not directly manipulate these fields. The reader is refered to the
examples in Section 4.

typedef struct object.3d {
struct object 3d *parent;
struct object_3d *sub;
struct object.3d *next;

Transform *xform;

int type;
char *data; /* pointer to object.3d specific structure */

} Object_3d;

Table 7: The Object_3D data structure

parent, sub and next An acyclical network may be thought of as a tree like
structure which starts at ground with a single root node. As a member of an
acyclical object network, a node may have associated with it one or all of either
(i) a parent node, (ii) a sub-node, or (iii) a next-node. Ior any arbitrary node
in the network there is a unique parent node from which it is spawned; it may,
however, have multiple siblings (nexts) as well as multiple children (subs). Note
that because it belongs to an acyclical network, an object is connected to only its
parent and its children (subs).

zform This field of the structure holds information regarding the connection
(affine transformation) between this object and its parent object. Note that the
field zform is itself a structure. The structure Transform is shown in table 8 and
contains the nine quantities needed to uniquely determine an affine transforma-
tion. Scale, position, and rotation information are stored as vectors in IR* and may
be accessed via the predefined constants X,Y and Z. For example to access the
the y-coordinate of the position information of an associated object called Ob the
correct reference would be Ob->zform->position[Y].

typedef struct transform {
float scale[3];
float position(3];
float rotation{3];

} Transform;

Table 8; The Transform data structure

type and data This field holds an integer value which indicates the type of object
which the structure describes. A list of object types employed by GSMS is given
in Table 9. The field data is a pointer to a structure containing the necessary data
for the type.

I object type [Structure Name l description
USER application definable
CYLINDER Cylinder poiygonal cylinder
SPHERE Sphere polygonal sphere
DEPTH_POLYGON | Depth_polygon | stretched polygon (along polygon normal)
POLYGON_LIST Polygon list arbitrary polygonal object

Table 9: Object types

16

3.3.7 Instantiating an object

When describing a complex three dimensional object via the GSMS model man-
ager, an application must first call the model manager routine new_object(). Be-
sides providing the necessary initialization of the network graph it returns a pointer
to the root object. Access to this pointer is essential in defining render routines
(see the appendix for examples).

new_object()

Initializes and returns a pointer to the ‘root’ node of the object graph. Typically
this routine is invoked only once at the begining of the object graph definition.

draw_object(Object_3d *object)

Draws the object tree of the complex object starting at the cell specified as its
argument object. To render the entire complex object the application would pass
the ‘root” node address as the argument. The operation of this routine is detailed
precisely in Section 3.3.9.

For each of the object types listed in Table 9 there is an associated routine
which takes pertinent object geometry and materials information and places it into
the appropriate data structure. In all cases these routines take as an argument a
potnter to the appropriate data structure. It is the responsibility of the application
to allocate the necessary memory to hold the structure. The operation and syntax
of these routines is detailed in the following.

make_cylinder(Cylinder *c, float radius, height, int n_sides, top_material,
bottom_material, edge_material_1, edge_material_2, char a)

Instantiates a polygonal approximation to a cylindrical shell with origin coinci-
dent with its centroid (assuming uniform mass) in the orientation aligned with the
axis indicated in the argument a € {2,y, z}. The resolution of the polygon approxi-
mation is controlled by the argument n_sides and signifies the number of rectangles
which will comprise the walls of the cylinder. Arguments edge_material_! and
edge_material_2 indicate materials of alternating polygonal sections of the cylinder
walls. All remaining arguments are self explanatory.

make._sphere(Sphere *s, float radius, int n_sides, materiall, material2)

Instantiates a polygonal approximation to a spherical shell with origin at its cen-
ter. Arguments materiall and material? indicate materials of alternating polygonal
sections of the sphere. The resolution of the polygon approximation is controlled
by the argument n_sides and signifies the number of polygons lying on the equator
of the sphere. Note if it is desired to have a sphere of uniform material one may
simply indicate the same material for both materiall and material2. All remaining
arguments are self explanatory.

17

3.3.8 Some Modeling Routines

move_object_origin(Object_3D *Ob, float dx, dy, dz)

Incrementally adjusts the origin of the object Ob by the specified coordinates
dz, dy, dz. Since it is the origin to which connections are assumed to be made,
this routine provides control over the location of connections between objects. For
instance, in the case of a two armed rigid robotic linkage modeled as two cylinders,
object origins should occur at the base of the cylinders and not the default centroid
location.

3.3.9 Rendering an Object (* application transparent)

Having introduced the concept of an object network, and consequently the
Object_3D structure, the drawing of an object is easily accomplished. Specifically,
one may apply a recursive algorithm to render any object described by an acyclical
object network. Table 10 displays the C code instructions which GSMS uses for an
object’s rendering.

draw.object(0)
Object.3d *0;

{

Object.3d *0b;

for(Ob=0; Ob !'= (Object3d %) 0; Ob = Ob->next) {
pushmatrix();
render (0b);
if (Ob->sub != (Object3d *) 0) draw_object(Ob->sub);
popmatrix();

Table 10: Drawing an object recursively

3.3.10 Forming the Object Network

GSMS provides two basic tools for constructing an object network spawn_sub()
and spawn_next(). Note that object geometry information is referenced via a
character pointer data. Hence whatever type data is stored at location data it
should be type cast to the type char in a call to one of these routines. Described
below is their syntax and operation.

Object_3D *spawn_sub(int type, char *data, Object_3D *parent, Trans-
form *xform)

138

This routine enters an object into the network as a subobject, as the child of the
object parent. It returns a pointer to the Object_3D element in which this object
is placed. Initial connection information is given in the argument zform. It is a
pointer to the transformation information which describes the connection between
this new object and its parent. As such it is the responsibility of the application
to allocate memory for the transformation information. This may be accomplished
via the GSMS routine new_transform(); see below. Other information stored in
the object network such as the object’s type and a pointer to a block of data which
describes the object are also required.

Object_3D *spawn_next(int type, char *data, Object_3D *from, Trans-
form *xform)

This routine enters an object into the network as a nezt-object, an object on the
same level of the object from. It returns a pointer to the Object_3D element in
which this object is placed. Initial connection information is given in the argument
zform. It is a pointer to the transformation information which describes the con-
nection between this new object and its parent (the same as from’s parent). As such
it is the responsibility of the application to allocate memory for the transformation
information. This may be accomplished the GSMS routine new_transform(), see
below. Other information stored in the object network such as the object’s type
and a pointer to a block of data which describes the object are also required.

Transform *new_transform(float sx, sy, sz, px, py, pz, rX, Iy, rz)

Returning a pointer to a Transform structure, this routine allocates and stores
the scale (sx,sy,sz), rotation (rx,ry,rz), and position (px,py,pz) information into
a block of memory. Angles are assumed to be in degrees. It is most useful in
conjunction with the spawn_next() and spawn_sub() routines.

3.4 Properties/Lighting Manager

The properties and lighting manager is the least developed of all the managers
here and therefore the manager which could be most improved. It is provided in
its current rudimentary form, however, to meet the main objective of GSMS: to
provide a fast way to develop high quality graphical simulations. In this context
‘high quality’ refers to simulations which incorporate lighting and material models
contributing to the resulting realism of the overall simulation.

Currently in GSMS there is only one lighting model which consists of two infinite
white light sources: one hitting the z-y plane from above at an angle of 45° and
on from below at the same angle. Another more grave drawback of the materials
manager is that there are no management routines to deal with the creation and
manipulation of user defined materials. 2 There is however a small set of predefined
materials listed in Table 11 which may be accessed by the application.

2Providing more flexibility in the description of the lighting model as well as providing routines
for the creation and management of user defined materials are key areas of future work on GSMS.

19

! Name Description
GREY_MAT grey metallic material
GOLDEN_MAT | gold metallic material
RED_MAT red metallic material
GREEN_MAT | green metallic material
BLUE_MAT blue metallic material

Table 11: Predefined Materials

4 Applications

This section presents brief descriptions of three example GSMS applications.
The appendix contains the example programs in full coded detail. Emphasis in
these examples is placed on the graphical description and set-up of the applica-
tion/user interface and ignores the details of the method of solving the dynamical
system. All of the applications presented here are organized as two distinct files:
(1) one which describes the physical three dimensional model (usually model.c) and
(ii) one which describes the set-up of the workspace. Note the compact and suc-
cinct fashion in which potentially cumbersome and clumsy graphical simulations

can be described with GSMS.

In all GSMS applications which include a 3-D window a navigation panel is
automatically created. This navigation panel consists of three sliders which control
the look at position (the user is always looking at the origin) via polar co-ordinates.
Consequently the default labels for these sliders are ‘distance’, ‘Pan X’, and ‘Pan
Y’

4.1 Simple Pendulum

Probably the best understood and most analyzed control system which exists
is that of the simple pendulum. In this example a pendulum is modeled as an
interconnection of three cylinders in opposing orientations. These cylinder objects
are contained in a single branch of an acyclical object network.

4.2 Planet/Moon System

Planetary motion is another area in which relatively simple dynamical models
may be developed. In this example a planet with two small moons in its orbit is
modeled by three spheres in a three dimensional field of ‘stars’. The three sphere
objects are placed in a lateral object network, i.e. they are all siblings. The star
field is implemented by providing an application defined render function which first
calls the GSMS default render and then the star field render.

4.3 Elephant Trunk Manipulator

One of the most dextrous naturally occuring manipulators is that of the ele-

20

phant’s trunk. Using GSMS it is especially simple to describe such a manipulator
as one branch of an acyclical object network. Having described the elephant trunk
so compactly, one may then focus his attention on its control. The application
presented here involves a scheme for position control (code deleted). Modeling the
elephant trunk as a series connection of n rigid links, one sees that there is a great
many degrees of freedom with respect to position control. Having a three dimen-
sional representation of a control algorithm’s behavior can be a valuable source of
information to the control engineer.

References

[1] B. W. Kernighhan and D. M. Ritchie, The C Programming Language. Prentice
Hall, second ed., 1988.

(2] R. H. Byrne, “Interactive graphics and dynamical simulation in a distributed
processing environment,” Technical Report M.S. 90-7, University of Maryland
Systems Research Center, 1990.

(3] D. A. Tristam and P. P. Walatka, “The panel library manual,” Technical Re-
port, NASA Ames Research Center and Sterling Software, 1989.

[4] J. Foley, A. vanDam, S. Feiner, and J. Hughes, Computer Graphics Principles
and Practice. Addison Wesley, 1990.

Appendix (Coded Examples)

#

Makefile for GSMS "pendulum" application 5/30/91 A.T.

#

PENDULUM.O = pendulum.o model.o
IRIS = IRIS 4D
GSMS_DIR = /everest/users/tonyt

INCLUDE_DIR = $(GSMS_DIR)/include
LIB_.DIR = $(GSMS_DIR)/lib

INCLUDE_DIRS= —~I$(INCLUDE_DIR) —I/usr/local/include
LIB_DIRS= —L$(LIB_DIR) —L/usr/local/lib

GSMS_LIB = —lgraph —lpnl.mngr —llink list —lpanel
LIBES = 3(GSMS_LIB) —lgl —lm

CFLAGS = —D$(IRIS) $(INCLUDE_DIRS) $(LIB_DIRS)

pendulum: $(PENDULUM.O)

$(CC) $(CFLAGS) $(PENDULUM.O) —o pendulum $(LIBES)

16:18 May 31 1991

(Makefile)

10

Page 1 of Makefile

gy e <

make model(model.c)

#include <gl.h>

#include <math.h>

F#include "display.h"

#include "light.h"

F#include "3d_tools.h"

F#define ARM_RADIUS 0.1

/* pendulum angle */ 10
float *theta ptr;

/¥ base parameters */

float base_radius=0.3, base_width=0.1;
int base sides = 10;

/* arm parameters */

20
float arm radius=ARM_RADIUS, arm_width=2.0;
int arm sides = 30;
/* weight parameters */
float weight radius=0.4, weight width=ARM_RADIUS;
int weight sides = 20;
/* The objects */
30
Object_3d *the_ground, *base, *arm, *weight;
make_model() make model
int i;
Cylinder base_cyl, arm_cyl, weight_cyl;
/* Describe the parts: double pendulum made completely from cylinders‘ */ 40
/¥ base */
make_cylinder(&base_cyl, base radius, base_width, base_sides,
GREY_MAT, GREY_MAT, GREY MAT, GREY_MAT, ’y’);
/* arm */
make_cylinder(&arm_cyl,
arm_radius,arm_width,arm sides, 50

GREY_MAT, GREY_MAT, GREY MAT, GREY_MAT, ’y’);

/* weight */

16:08 May 31 1991 Page 1 of model.c

B R

make model(model.c)

make_cylinder(&weight_cyl,
weight_radius,weight_width,weight_sides,
GREY_MAT, GREY MAT, GREY_MAT, GREY_MAT, ’z’);

/* Describe the conneclions, i.e. how the parts go together */
50

the_ground = new_object();

base = spawn_next(CYLINDER, (char *) &base_cyl, the_ground,
new_transform(
1.0, 1.0, 1.0,
0.0, arm_width, 0.0,
0.0, 0.0, 0.0)

)i

arm = spawn sub(CYLINDER, (char *) &arm _cyl, base, 70
new_transform(
1.0, 1.0, 1.0,
0.0, —arm_width/2.0, 0.0,
0.0, 0.0, 0.0)

weight = spawn_sub(CYLINDER, (char *) &weight_cyl, arm,
new_transform(
1.0, 1.0, 1.0,
0.0, —(arm_width/2.0 + weight radius), 0.0, 30
0.0, 0.0, 0.0)

/* point to aclive model parameters */

theta ptr = &(base—>xform—>rotation{Z]);

16:08 May 31 1991 Page 2 of model.c

main(pendulum.c)

Ftinclude <stdioh>

#include <gl.h>

#include "math.h"

#include "display.h"

Finclude "light.h"

#include "pnl_manager.h"

#include "3d_tools.h"

#include "tools.h"

#include "graph.h" 10

#define THETA_PTS 500
/* variables from model */

extern Object_3d *the ground;
extern float *theta ptr;

/* booleans */

20
int automatic = 0, from file = 0;
/¥ misc */
float frequency = 0.1, amplitude= 10, dummy, time = 0, time_increment=0.1;
float theta_data[THETA_PTS];
int theta index=0;
/* file stuff */
30

int n_data=0, index=0;
char in_filename[TYPE IN_LEN];
Point2 data[20000];
FILE *fp;
char message[80]; /* buffer for report window message */
/* procedures */
void read_data(), reset_simulation(); 40
int draw _scene();
/* Graphics */
Graphic Display, Theta,
main() main
{

window _init();

set_up_display(); 50

while (TRUE) {
numerical_calculations();

16:08 May 31 1991 Page 1 of pendulum.c

main—-numerical calculations(pendulum.c)

do_window _stuft();
}
set_up_display set u ~C].iS la
p_aispiay

60
/* windows */

prefsize(600, 450);
sprintf(Display.title, "Pendulun");
Display.type = G_3D;
init_graph(&Display, draw_scene);

prefsize(600, 250);

sprintf(Theta.title, "Theta");

Theta.type = ARRAY; 70
Theta.graph.y = theta_data;

Theta.graph.n pts = theta_index;

Theta.R = Box(0.0, (float) THETA_PTS, —180.0, 180.0);

init_graph(&Theta);

/* 3D model */
make_model();
/* panels (note: make_model(}) to be called first for proper initialization) */ 80
sprintf(in_filename, "No File"); /* inilialize filename */
new_panel("Simulation");
make_variable("increment", &time increment, null function);
make_type_in("file name", in_filename, read_data);
make_toggle button(" run", &from file);

make button("* reset", reset_simulation};

new_panel("Manual Control"); 90
make_toggle button(" automatic", &automatic);

make slider("frequency", 0.0, 1.0, &frequency);
make slider("amplitude™, 0.0, 270.0, &litude);

make slider("theta", —180.0, 180.0, theta ptr); /* from model */

}
numerical_calculations() /* psuedo dynamics */ numerical calculations
{ 100

int i;

if (from file) {
for (i=index; data[i].x<time && index<n_data; i++) { }
index=i;
*theta ptr = data[index].y;

16:08 May 31 1991 Page 2 of pendulum.c

© e -

}

numerical calculations—draw _scene(pendulum.c)

time += time_increment;
update_theta_graph();

} else if (automatic) {

*theta_ptr = amplitude*sin((double) (frequency*time));

time += time_ increment;
update_theta_graph();

update_theta_graph()

{

}

theta_data[theta_index] = *theta_ptr;
theta_index = (theta_index+1)%THETA _PTS;
Theta.graph.n pts = theta_index;
Theta.new_data = TRUE;

void read_data()

}

int 1=0;

if ((fp = fopen(in_filename, "x")) == 0) {

110

update theta graph

sprintf(message, "Unable to open file: ’Y%s’ ", in filename); 130

report_window(message);
return;

};

while(fscanf(fp, "%t %f %f %f", &(datali].x), &dummy, &dummy, &(datafi].y)) != EOF) {

i+
}

n_data=i;
printf("Read %d data points\n", n_data);

time = data[0].x;
index=0;

void reset_simulation()

{

}

time = data[0].x;
*theta ptr = dataf0].y;
index=0;

draw_scene()

draw_axis();
draw_object(the_ground);

16:08 May 31 1991

140

draw scene

Page 3 of pendulum.c

(Makefile)

#

Makefile for GSMS "planet" application 5/30/91 A.T.
#*

PLANET.O = planet.o model.o

IRIS = IRIS 4D
10

GSMS_DIR = /everest/users/tonyt

INCLUDE_DIR = $(GSMS_DIR)/include
LIB.DIR = $(GSMS_DIR)/lib

INCLUDE_DIRS= —I$(INCLUDE_DIR) —I/usr/local/include
LIB_DIRS= —L$(LIB_DIR) —L/usr/local/lib

GSMS_LIB = —lgraph —lpnl.mngr —llink list —lpanel
LIBES = $(GSMS_LIB) —lgl —lm 20

CFLAGS = —D$(IRIS) $(INCLUDE_DIRS) $(LIB_DIRS)

planet: $(PLANET.O)
$(CC) $(CFLAGS) $(PLANET.O) —o planet $(LIBES)

16:07 May 31 1991 Page 1 of Makefile

update_model(model.c)

#include <gl.h>

#include <math.h>

#include "display.n"

F#include "1light.h"

#include "3d_tools.h"

#define MAX_MOONS 10 /* mazimum number of moons */

/* global parameters */ 10
float sphere_radius=1.0, sphere_sides=20, orbit_var=6.0, orbit{MAX MOONS], n_moons=2;

/* data structures assigned to hold object information */

Sphere moon_sphere[MAX_MOONS], planet_sphere;

/* pointers to members of the object graph */

Object_3d *the_ground; /* pointer {o the ground (root) node */ 20
Object_3d *planet, *moon[MAX MOONS};

make_model() make model
int i;
/¥ inilialize object graph */
the_ground = new_object(}; 30
/¥ set up specific object information */
update_model();
/* place main planet into object graph */

planet = spawn_next(SPHERE, (char *) &planet _sphere, the ground,
new_transform(

1.0, 1.0, 1.0, 40
0.0, 0.0, 0.0,
0.0, 15.0, 0.0)
)i
/* place moons into object graph */
for (i=0; i<n_moons; i++) spawn_moon(i);
}
update_model() update_model
51

int i;

16:07 May 31 1991 Page 1 of model.c

update_model-spawn_moon(model.c)

for (i=0; i<n_moons; i++) {
make_sphere(&moon_spherefi},
0.4*(rand()%1000)/1000.*sphere_radius,
(int) sphere_sides, RED MAT, RED_MAT);

}
make sphere(&planet_sphere, sphere_radius,
(int) sphere_sides, BLUE_MAT, BLUE_MAT); 60
}
spawn_moon(i) Spawn_moon
int i;
orbit[i] = orbit_var*(rand()%1000)/1000.+sphere_radius;
moonli] = spawn_next(SPHERE, (char *) &moon sphere[i], the ground,
new_transform(
1.0, 1.0, 1.0,
orbitfi], 0.0, 0.0, 70
0.0, 0.0, 0.0)
);
}

16:07 May 31 1991 Page 2 of model.c

#include
Finclude
#include
#include
#include
#include
#include
#include
#include
Finclude

main(planet.c)

<stdio.h>

<gl.h>

"math.h"

"display.h"

“"light.n"

"pnl_manager.h"

"3d.n"

"3d_tools.h"

"tools.h" 10
"“graph.n"

#define TORAD(x) (x*M_P1/180.0)

/¥ externals from model */

extern Object_3d *the_ground, *planet, *moon(];
extern float sphere_radius, sphere_sides, n_moons, orbit_var, orbit[];

extern update_model(}; 20

/* dynamics parameters */

int 1 time=0;
float time_step=1.0, rotation scale = 10.0;
Point2 sincos{1000];

/* star background parameters */

float n_stars=1000.0, star_radius=0.05; 30
Point3 star_list[100000];

void init_stars();
float get_rand();

/* Graphics */

Graphic Display, Theta;

int do_axis=FALSE; 40
int draw_scene();

main() main
init_stars();
init_sincos();
window_init();
set_up_display();
while (TRUE) {)

16:07 May

numerical_calculations();
do_window_stuff();

31 1991 Page 1 of planet.c

main-numerical calculations(planet.c)

}

set_up_display() set_up,display

/* windows */

60
prefsize(700, 700);
sprintf(Display.title, "Planet");
Display.type = G_3D;
init_graph(&Display, draw_scene);
/* 3D model */
make_model();
/* panels (needs model definition) */ 70
new_panel("Planet");
make_toggle button(" axis", &do_axis);
make_variable("radius", &sphere_radius, update_model);
make_variable("sides", &sphere_sides, update_model);
new_column();
make_variable("step”, &time step, null function);
make_variable("rot", &rotation_scale, null function);
new_panel("stars"); 80
make_variable("# stars', &n_stars, init_stars);
new_column();
make_variable("radius", &star_radius, null function);
}
float t=0.0;
numerical_calculations() /* pseudo dynamics */ numerical calculations
{ 91
int i;
for (i=0; i<n_moons; i++) {
moon(i]—>xform—>position[X] = orbitfi]* sincos[(i+1)*i_time%1000].y;
moon(i]—>xform—>position[Z] = orbitfi]* sincos{(i+1)*i_time%1000].x;
moon(i]—>xform—>rotation[Y] = rotation_scale*t;
}
planet—>xform—>rotation{Y] = rotation_scale*t/2.0; 100

i_time += (int) time_step;
i_time %= 1000;
t -+= time step;

16:07 May 31 1991 Page 2 of planet.c

numerical calculations—draw_stars(planet.c)

init_sincos{)

{
int 1=0;
float x;
for (x=0.0; x<2*M_PL; x+= 2*M_PI/1000.0) {
sincosfi].x = sin(x);
sincos{i++].y = cos(x);
}
}
draw_scene()
{
if (do_axis) draw_axis();
draw stars();
draw_object(the_ground);
}

void init_stars()

int i;
float radius, theta, phi;
radius= FAR/3.0;
for (i=0; i<n_stars; i++) {

theta = M_PI*get_rand();

phi = M _PI*get_rand();

star_list[i].x = radius*sin(theta)*cos(phi);
star_list[i].y = radius*sin(phi);
z =

star_list[i] radius*cos(theta)*cos(phi);

}

Hoat get_rand()

return(1.0 — 2.0%(rand() % 1000)/1000.0);
}

draw_stars()
int i;
RGBcolor(200, 220, 250);

for (i=0; i<n_stars; i++) {
star(star_list[i], star_radius);
}

16:07 May 31 1991

1nit sincos

110

draw scene
120

130

140

draw stars

150

Page 3 of planel.c

(Makefile)

z Makefile for GSMS "elephant' application 5/30/91 A.T.

#

ELEPHANT.O = elephant.o model.o

IRIS = IRIS_4D

GSMS_DIR = /everest/users/tonyt 10

INCLUDE_DIR = $(GSMS_DIR)/include
LIB_DIR = $(GSMS_DIR)/lib

INCLUDE_DIRS= —I$(INCLUDE_DIR) —I/usr/local/include
LIB_DIRS= —L$(LIB_DIR) —L/usr/local/lib

GSMS_LIB = -lgraph —lpnl mngr ~llink list —lpanel
LIBES = $(GSMS_LIB) ~lgl —Im

20
CFLAGS = —DS$(IRIS) $(INCLUDE_DIRS) $(LIB_DIRS)

elephant: $(ELEPHANT.O)
$(CC) 3(CFLAGS) $(ELEPHANT.O) —o elephant $(LIBES)

16:04 May 31 1991 Page 1 of Makefile

make model(model.c)

#include <glh>
#include <math.h>
#include 'display.h"
#include "1light.h"
#include "3d_tools.h"
#include "elephant.h"

/* Note: This code is generalized to genmerate N legged creatures with each leg
described by N_JOINTS number of rigid links. To reirieve the elephant
trunk simply define N LEGS as 1.

¥/

float *jx[N_LEGS][N_JOINTS], *jy[N_LEGS]|[N_JOINTS], *jz(N_LEGS][N JOINTS];
float length[N_JOINTS];

float radius=0.3, height=1.2;
float n_sides = 30;

Object_3d *the ground, *Head, *current_O;
Cylinder cyl;
Sphere head;

make_model()

{
int 1,;
double x;

make sphere(&head, 3.3*radius, 40, GREY_ MAT, GREY_MAT);
make left_cylinder(&cyl, 0.5, height, (int) n_sides,

10

make model

30

GREY_MAT, GREY MAT, GREY MAT, GREY_MAT, ’z’);

the_ground = new_object();

Head = spawn_next(SPHERE, (char *) &head, the_ground,
new_transform(

1.0, 1.8, 1.2,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0)
)
for (j=0; j<N_LEGS; j++) {
1=0;

x = 2.0%3.1415%j/((float) N_LEGS);
spawn_sub(CYLINDER, (char *) &cyl, Head,
new_transform(
0.95, 0.95, 0.85,
sin(x), 0.0, cos(x),

40

10.0, 360.0%j/((float) N_LEGS), 0.0)

);

x[lli] = ¤t_O—>xform—>rotation[X];
Jyblli] = ¤t_O—>xform—>rotation[Y];
jz(j}{i] = ¤t_O—>xform—>rotation(Z];

16:04 May 81 1991

50

Page 1 of model.c

for (i=1; i<N_JOINTS; i++) {

16:04 May 31 1991

new_transform(

0.95, 0.95, 0.85,
0.0, 0.0, 1.1,
10.0, 0.0, 0.0)
);
ix[j]li] = ¤t_O—>xform~—>rotation[X];
iv(lli] = ¤t_O—>xform—>rotation[Y];
jzjl{i] = ¤t_O—>xform—>rotation[Z];

make model(model.c)

spawn_sub(CYLINDER, (char *) &cyl, current_O,

60

Page 2 of model.c

#include <stdio.h>
#include <math.h>
F#include <gl.h>
Finclude "math.h"
#include "display.h"
F#include "light.h"
#Finclude "3d_tools.h"
#include "tools.n"
#include "graph.h"
#include "elephant.h”

/¥ variables from model */

extern Object_3d *the_ground, *Head;
extern float radius, height, n_sides;

extern float *jx[N_LEGS|[N_JOINTS], *jy[N_LEGS][{N_JOINTS],

float length[20];

/* booleans */

int x_rot=FALSE, y_rot=FALSE;
/* misc */

int mode=SIN;

float step=1.0, freq = 0.1, star_diameter=0.2;
Point3 target;

/¥ procedures */

int draw_scene(), reset_simulation();
/* Graphics */

Graphic Display;

main()

window_init();

set_up_display();

while(TRUE) {
numerical_calculations();
do_window_stuff();

}

}

set_up_display()
int ij;
char *s_ptr;

16:04 May 31 1991

set_up_display(elephant.c)

10

*j2(N_LEGS][N_JOINTS];

20

30

main

40

set_up_display

50

Page 1 of elephant.c

}

set_up_display-numerical calculations(elephant.c)

prefsize(800, 650);
sprintf(Display.title, "Elephant");
Display.type = G_3D;
init_graph{&Display, draw_scene);

target.x = 5.0;
target.y = 0.0;
target.z = 0.0;

make_model(};

new_panel("Control");
make slider("*step", 1.0, 10.0, &step);
make slider("freq", 0.01, 0.09, &freq);
new_column();
make_toggle button(" y_rot", &y_rot);
make_toggle button(" x_rot", &x_rot);
make button(" reset", reset_simulation};

new_panel("Transform");

60

make slider("head y", —360.0, 360.0, &Head—>xform—>rotation[Y]);

for (i=0; i<N_JOINTS; i++) {
s_ptr = (char *) malloc(30);
sprintf(s_ptr, "joint #%d", i+1);

make slider(s_ptr, —30.0, 50.0, jx[0]{i});

1

new_panel{"Target");

make_variable("length", &star_diameter, null function),

make slider("x", —10.0, 10.0, &target.x);
make slider("y", —10.0, 10.0, &target.y);
make slider("z", —10.0, 10.0, &target.z);

double t;

30

numerical_calculations() /* position control? HA! (for ezhibition only) */niumerical calculations

{

int i,j;

for (j=0; j<N_LEGS; j++)
for (i=0; i<N_JOINTS; i++) {

switch(mode) {

case RANDOM:

if (x_rot) *jx[j}[i] —= step*((rand()% 1000)/1000.0 — 0.5);
if (y_rot) *jy[i]{i] —= step*((rand()% 1000)/1000.0 — 0.5);

break;

case SIN:
if (x_rot) *jx[j][i} —= step*sin(freq*t);
if (y_rot) *jy[jl[i} —= step*cos(freq*t);

16:04 May 31 1991

91

Page 2 of elephant.c

numerical calculations—draw _target(elephant.c)

t += 0.1;
break;

}

reset_simulation()
nt 1;;

for (j=0; j<N_LEGS; j++) {
1=0;
*iy[§l[i] = j*360.0/((float) N_LEGS);
for (i=1; i<N_JOINTS; 1++) {
*ix[]] = 10.0;
*iylill] = 0.0;

[u——

}

draw_scene()
draw_axis();
draw_object(the_ground);

draw_target();

}

draw_target()

RGBcolor(100, 100, 220);
star(target, star_diameter);

16:04 May 31 1991

110

reset simulation

draw scene

130

draw_target

Page 3 of elephant.c

